Dynamic changes of fibrin architecture during fibrin formation and intrinsic fibrinolysis of fibrin-rich clots.
نویسندگان
چکیده
Clotting and fibrinolysis are initiated simultaneously in vivo, and fibrinolysis usually occurs without any individualized lysis front (intrinsic fibrinolysis). We have developed a novel model to assess whether morphological changes resulting from intrinsic fibrinolysis are similar to those previously reported at the lysis front using externally applied lytic agents. Fibrin assembly and fibrinolysis were followed in real-time by confocal microscopy using gold-labeled fibrinogen molecules. An increase in fiber absorbance (30%, p < 0.01) and a decrease in fiber diameter (60%, p < 0.01) due to the ongoing accumulation and packing of fibrin molecules were the most significant detectable features occurring during fibrin assembly. Similar features with a similar magnitude were observed during fibrin dissolution, but in the reverse order and with a 3-fold increase in duration. Then, lysing fibers were progressively transected laterally, and thinner fibers were cleaved at a 2.5-fold faster rate than thicker fibers (p < 0.001). Frayed lysing fibers were seen to interact progressively with adjoining fibers (agglomeration), leading to a 76 and 88% increase in the network pore diameter (p < 0.05) and fiber diameter (p < 0.01), respectively. At the maximum decrease in fiber absorbance (46%, p < 0.05), the network suddenly collapsed with the release of large fragments that gradually vanished. Morphological changes of fibrin that occur during intrinsic fibrinolysis are similar as those observed next to the lysis front, although they are not restricted spatially to the clot/surrounding milieu interface but are observed through the entire clot.
منابع مشابه
Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy.
Abnormal fibrin architecture is thought to be a determinant factor of hypofibrinolysis. However, because of the lack of structural knowledge of the process of fibrin digestion, relationships between fibrin architecture and hypofibrinolysis remain controversial. To elucidate further structural and dynamic changes occurring during fibrinolysis, cross-linked plasma fibrin was labeled with colloida...
متن کاملPolyphosphate modifies the fibrin network and down-regulates fibrinolysis by attenuating binding of tPA and plasminogen to fibrin.
Activated platelets secrete a negatively charged polymer, polyphosphate (polyP). Here, we explore the interactions of polyP with fibrin(ogen) and its effect on fibrin structure and fibrinolysis. Electrophoretic mobility and binding assays indicate that polyP interacts with fibrinogen and soluble fibrin. Clots formed in the presence of polyP exhibited reduced turbidity and permeability indicativ...
متن کاملType 1 plasminogen activator inhibitor binds to fibrin via vitronectin.
Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of p...
متن کاملDisaggregation of in vitro preformed platelet-rich clots by abciximab increases fibrin exposure and promotes fibrinolysis.
The glycoprotein IIb/IIIa receptor inhibitor abciximab has been shown to facilitate the rate and the extent of pharmacological thrombolysis with recombinant tissue plasminogen activator (rtPA) in patients with acute myocardial infarction. However, the underlying mechanisms remain not fully determined. We sought to demonstrate that this facilitating effect of abciximab could be related to its po...
متن کاملCirculating Microparticles Alter Formation, Structure, and Properties of Fibrin Clots
Despite the importance of circulating microparticles in haemostasis and thrombosis, there is limited evidence for potential causative effects of naturally produced cell-derived microparticles on fibrin clot formation and its properties. We studied the significance of blood microparticles for fibrin formation, structure, and susceptibility to fibrinolysis by removing them from platelet-free plas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 24 شماره
صفحات -
تاریخ انتشار 2003